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Abstract: The skeletons of organic molecules are viewed as graphs, and a simple graphical procedure for defining and enum­
erating all contained rings (monocycles) and /•-cycles (bicycles, tricycles, etc.) is offered for molecules of r $ 7. Also the syn­
thesis tree, for skeletal construction reactions only, is analyzed in a new grid format, applicable to any target molecule which 
allows enumeration of starting material skeletons and routes to target. The grid is composed of sets of intermediates defined 
by the number of components and number of rings. 

There is a tradition in organic chemistry that there is an 
infinite number of ways to synthesize any given compound. 
It is also clear that this is possible by infinite variation of 
transient groups en route or by aimless refunctionalization. 
However, a serious approach to the real scope of meaning­
ful variation in synthetic routes has not yet been examined. 
While it is unlikely that such variations are infinite, it is im­
portant to understand the breadth of the possible in synthe­
sis design within the limits of sensible definition so that pro­
tocols of systematic synthesis generation can be assessed. It 
is probably fair to say that there has been to date very little 
discussion of the allowable restrictions on synthesis formu­
lation or any sharp conceptual definition of the "synthesis 
tree" of paths and intermediates.2 

As a step toward clarification of the synthesis tree, we 
shall focus only on the skeleton building aspect of a synthe­
sis, following the kind of analysis previously applied to the 
simple model problem of linking substituents to an aromatic 
ring"5 and enumerating sets of pathways sharply defined. 
Furthermore, as a first step, only direct routes will be ex­
amined, i.e., those which contain only construction steps 
and no skeletal cleavages.3 In this way, we may hope to 
clarify the scope of the synthesis tree by asking such ques­
tions as: how many ways may a skeleton be split into 2, 3, 4 
. . . parts; what sizes of these parts or components (syn-
thons) result, and how many cuts or bond dissections of the 
skeleton are required;5 how many synthons of 2, 3, 4 . . . 
carbons exist in the skeleton as potential starting materials 
of that size; how many ways exist to build the skeleton from 
given subskeletons; how many annelations or rearrange­
ments3 are possible, etc.? Can we categorize and count all 
starting materials and pathways as in ref lb? 

Skeleton building is a problem in graph theory. Mathe­
matically molecular structures as we draw them are simply 
graphs composed of points (atoms) linked with lines 
(bonds). The synthesis tree is also a graph, and application 
of graph theorems allows us to gain insights into synthesis 
which might not otherwise be apparent, as well as to enu­
merate synthons and pathways by the use of related com­
binatorics. Such enumerations will likely be more valuable 
for defining the various ways in which synthons and path­
ways are generated and the general size or scope of the 
problem than for the absolute numbers of possibilities that 
result. First we shall look at molecular skeletons as graphs 
and then at systematic ways to disconnect them to build 
synthesis trees of construction pathways. 

The Skeleton as Graph. The carbon skeleton of the target 
structure6 may be examined as a connected, labeled graph 
of points and lines,7 the carbon atoms («o), and their a 
bonds (b0), respectively. The number of (fundamental) 
rings is ro = bo- no+ I. This graph of the skeleton may be 

reexpressed mathematically as its adjacency matrix, A 
(with elements, ay), in which each row (and column) repre­
sents a point (atom), numbered as on the skeleton;8 thus A 
is a («o * Ho) square symmetrical matrix. The elements, ay, 
are 1 or 0 if the atoms / and j are or are not bonded to each 
other, respectively, and the diagonal elements, a,, = 0. This 
matrix contains all the information about the skeleton (cf. 
bo = ]kSay) and is ideally amenable for computer storage 
as a Boolean array since it contains only binary informa­
tion. 

In principle all rings can be defined by an algorithm 
which "walks through" this matrix identifying successive 
adjacencies until the starting point is reached. Such an al­
gorithm starts at the beginning of each row, passes horizon­
tally to each " 1 " , then drops (or rises) vertically to the diag­
onal (an) entry, then passes horizontally again in either di­
rection to each " 1 " , and repeats, recording each successive 
atom, /, which is reached until a return to the starting atom 
is obtained. (The algorithm produces redundancies which 
must be reduced; i.e., it produces each ring 2p times, where 
p = ring size.) This is essentially a simple "tree search" 
common to many computer operations in data manage­
ment, and a number of algorithms for defining rings and 
sets of rings in polycyclic structures have been delineated 
and computerized.9 

In order to define a structure fully, each skeletal carbon 
(/) is separately defined by the number of its bonds to hy­
drogens (hi), heteroatoms (z,), and carbons (<r bonds, <r,; T 
bonds, x,); la this leads to a definition of the character of 
each carbon as c, = 10<r, + z,- + ir,. An expanded total 
structure matrix, S (elements, Sy), can now be made from 
the adjacency (skeleton) matrix, A, by substituting z,tfor a,, 
= 0 in the diagonal and using 2 and 3 instead of I for dou­
ble and triple bonds (between carbons), respectively. The 
structure matrix, S, defines not only the skeleton (since A 
may be derived from it) but also the functionality of the 
structure: 

(Tj = 2ytfy 

z,- = Sn 

ITj — Zij^iSjj — Oj 

hi= A- ((Ti + Zi + TT1) = 4 - ZyJy 

Ci = 10(7, + Zi + 1T, = 92yOy + 2yJy 

The adjacency and structure matrices for a tricyclic exam­
ple are shown in Figure 1. 

Further matrices can also be defined, such as the inci­
dence matrix (no X *o) showing the incidence of atoms (no) 
with bonds (bo), again with 0 and 1 elements, and matrices 
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Adjacency Matrix (A) Structure Matrix (S) Ring Matrix (R) 

Atoms 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 

0 
1 
0 
0 
0 
1 
1 
0 
0 
0 

2 

1 
0 
1 
0 
0 
0 
0 
0 
0 
0 

3 

0 
1 
0 
1 
1 
0 
0 
O 
0 
0 

4 

0 
0 
1 
0 
1 
0 
1 
O 
0 
1 

5 

0 
0 
1 
1 
0 
1 
0 
0 
1 
0 

6 

1 
0 
0 
0 
1 
0 
0 
1 
0 
0 

7 

1 
0 
0 
1 
0 
0 
0 
0 
0 
0 

8 

0 
0 
0 
0 
0 
1 
0 
0 
0 
0 

9 

0 
0 
0 
0 
1 
0 
0 
O 
0 
0 

10 

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

2 = " i 

3 
2 
3 
4 
4 
3 
2 
1 
1 
1 

COOH 

Atoms 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 

1 
1 
0 
0 
0 
1 
1 
0 
0 
0 

2 

1 
0 
1 
0 
0 
0 
0 
0 
0 
0 

3 

0 
1 
0 
1 
1 
0 
0 
0 
0 
0 

4 

0 
0 
1 
0 
1 
0 
1 
0 
0 
1 

5 

0 
0 
1 
1 
0 
1 
0 
0 
1 
0 

6 

1 
0 
0 
0 
1 
0 
0 
2 
0 
0 

7 

1 
0 
0 
1 
0 
0 
2 
0 
0 
0 

8 

0 
0 
0 
0 
0 
2 
0 
0 
0 
0 

9 

0 
0 
0 
0 
1 
0 
0 
0 
3 
0 

10 

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

S = 
(4-hi) 

4 
2 
3 
4 
4 
4 
4 
2 
4 
1 

5 ^COOH 

Faces 

0 
1 
2 
3 

0 1 2 3 

(2) 2 2 1 
2 0 2 1 
2 2 (1) 1 
1 1 1 0 

S = Pi 

5(7) 
5 
5(6) 
3 

2 = 18(21) 

21 +(3) 
12 

Elements = (Sy. Ring size = pj 

a = /3jj in parentheses 

not included in S = p-. 

1 2 - 1 2 

W ' V 
Figure 1. Matrix expressions of a sample structure. 

of atoms or bonds with rings, (no X ro) or (bo X ro). One 
such matrix of interest to us will be the ring matrix, /?, in 
which the rows (and columns) represent the fundamental 
rings (ro in number) of the skeleton. A molecular skeleton 
can be drawn in many (isomorphic) ways which preserve 
adjacency. We shall always use a plane graph representa­
tion, i.e., one in which no bond lines are crossed. Parentheti­
cally it may be noted that, because of the geometry of car­
bon and its limitation to a < 4, nearly all organic structures 
may be represented as plane graphs.10 The fundamental 
rings in a plane graph are the smallest ones, numbering ro 
•= bo ~ «o + 1 (the three rings in Figure 1 are the labeled 
ones, five-, five-, and three-membered, and do not include 
four other rings, 123456, 123547, 165347, and 12356, the 
first three of which are six-membered). The fundamental 
rings are called faces of the graph, defined as bounded by 
cycles of bonds (lines); the exterior face (face "0") is the 
outer or unbounded region'' (and is not counted in ro). 

If we define ring bonds (ft) as those lines that are part of 
a cycle of lines, then all ring bonds in the skeleton are com­
mon to two (and only two) faces and may be characterized 
by those two faces. The other bonds are acyclic bonds (a), 
parts of (uncyclized) chains. The ring matrix, R, therefore 
exhibits elements, fty, which are the number of bonds com­
mon to rings i and j . All bonds common to any two given 
fused rings (including the exterior face) are said to be of the 
same type. The exterior face is introduced as a zero row 
(and column) so that ft>,- (or fta) represents the number of 
outer bonds of ring /. Hence R is a symmetrical matrix of 
dimension (ro + 1) X (r0 + 1), the extra row (and column) 
for the exterior face. The regular entries, ft,-, indicate the 
number of ring bonds of each type, common to the two 
fused rings, i and j . The diagonal entries ft,- can be used to 
include all acyclic bonds (a).12 The row sums in R are then 
the sizes of the several rings (p, = 2/^,-ft/), the zero-row 
sum being the total of outer bonds on all rings or the mono-
cycle represented by the periphery of the molecule if all 
rings are fused. The total number of bonds, bo = a + 0 = 
s,- oft,- + 1IIZI^AJ-

We may now derive from a molecular skeleton (plane 
graph) a new graph, the face graph (F), exhibiting points 

which correspond to the (/o T 1) faces, or rings, of the skel­
eton (numbered for identification) and lines which corre­
spond to the presence of one or more /3 bonds common to 
the faces. The number of lines (e) in the face graph equals 
the number of types of ring bonds, ft/, and hence half the 
number of nonzero (and nondiagonal) entries in the matrix 
R. Alternatively, if all the nonzero ft, entries are changed 
to " 1 " (and all ft, to 0), R becomes the adjacency matrix 
for the face graph. When a ring bond in the skeleton is dis­
connected, in analyzing for synthesis design, the resultant 
skeleton will be expressed by a new face graph in which the 
line corresponding to the type of bond (ft,-) cut disappears 
and its two incident points are coalesced into one, repre­
senting a new (enlarged) skeletal ring (or the exterior face 
extended by the face of the cut ring); each disconnection of 
bonds of dissimilar type results in the removal of the corre­
sponding line in F. The face graph is valuable both in deter­
mining the number of ways of disconnecting (or, in reverse, 
constructing) the skeleton and in ascertaining the total 
number of rings in the skeleton. It may be noted here that 
the face graph is always a connected, plane graph like the 
skeleton from which it derives since it incorporates the exte­
rior face. 

A computer program for determining the total number of 
monocycles contained in a complex skeleton has recently 
been offered.9d The face graph allows the same determina­
tion to be made by hand very simply and quickly for skele­
tons containing up to seven fundamental rings, a range cov­
ering virtually all molecules in normal consideration. To 
this end consider the face graph with the exterior face 
(point "0") and its incident lines removed. This may be 
called the incomplete face graph, labeled F, containing e 
lines and r0 points corresponding to faces of the skeleton (ro 
< 7). Examples are shown in Figure 2. Monocycles larger 
than simple faces will now be recognized as fusions of two 
or more adjacent faces (i.e., by disconnection of their com­
mon skeletal bonds, ft;). Let the number of monocycles be 
Cn where n = number of simple faces fused into a larger 
monocycle (« < ro). The total number of rings .vill then be 
ICn. Thus, Ci = number of simple faces, i.e., the tradition­
al description of the molecule as bicyclic (Ci = 2), tricyclic 
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Figure 2. Molecular skeletons and their face graphs. 

Table I. Enumeration Formulas for Monocycles16 

C1 = r0 

C2 = e" 

C1 = e - 2 A = S1 ( 2 ' ) -

j j ( i 2
, 7 - 2 A ' + S 

2A 

Cr = 1 if all skeletal rings are fused13 

Cr _i = number of points removable from F to leave a connected graph of (r0-1) points 

Cr -2 = same for pairs of points to leave a connected graph of (r0-2) points 

Total monocycles for linear F = r0 (r0+1)/2 

(linear F: 1 2 3 4 5 
-• • •-

ro) 

r0 = points in F (labeled i, j , k, . . . ) 

e" = lines in F = points in L (labeled ij, ik, jk, . . . ) 

£ = lines in L 
d| = degree of point i in F 

A = number of triangles in F 

dj: = degree of point ij in L' 

A' = number of triangles in L' 

S = 0 -3nwhere \Z\ and D are the numbers of crossed and open squares in F x 

(Congressane) 

J K ' * . 

1 4 
3^ 

?K > 5 

(Ci = 3), etc. (Ci = ro, the number of points in F). The 
number of monocycles made by fusing two faces is then Ci 
= e, the number of lines in F, since each line in F joins two 
points and so indicates the fusion of two skeletal rings 
which can be opened into a single larger monocycle. In gen­
eral, Cn will always be the number of unique combinations 
of (« — 1) adjacent or linked lines in F, but simple calcula­
tion of (£_!) is inadequate since it takes no account of the 
condition of adjacency in the lines counted, and it will also 
introduce redundancies to the extent that F itself contains 
cycles. With the simplest cycle, a triangle, in F (see exam­
ple in Figure 1), it is clear that the three points it contains 
represent three skeletal rings that may be fused into a mo­

nocycle (bounded by atoms 12356 in Figure 1), but that 
combinations of lines, e, would count C3 = 3 instead of C3 
= 1 (there are three two-line combinations in a triangle: 
123, 231, 321). The formula for C3 then derives from 
counting adjacent pairs of lines and subtracting the redun­
dancy of triangles. In order to count adjacent pairs of lines, 
we note that such pairs have a central point in common. 
The degree (d,) of each point in F is simply the number of 
lines contiguous or adjacent to it so that the number of ad­
jacent line pairs is the sum of combinations of each point 
degree taken twice, or 2, (2 /')• Formulas for Cn are listed in 
Table I. 

The potential redundancy problem increases rapidly with 
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Skeleton: 

F: 1 
2^-1^5 

- ^ > E 
2 4 

^W 

L: 12 

d, = 1,4,3,3,3 

23 

24 
/— 

» < 
* 2 3 

45 
—T 

L 
d;j = 1,2,2,2,1 

C, 

C; = 

C,16 = 

C4 = 

Cs 

C1, = 

C, = 

Tota 

monocylces 

5 

5 

7-2=5 

3 

1 

0 

0 

= 19 

12 

25 

/ 2 4 

/ 34 
/ 23 • 

\ 35 

X25 
d' = 3,1,1,1 

5 

7 

15-8-1=6 

3+1=4 

1 

0 

0 

23 

45 

A • 

d- = 1,3,2,2,3,1,0 

23 35 

12 

12 

24 45 57 

el' = 2,2,2,3,3,3,3 

15-4=11 

15-4H = 12 

10 

5 

1 

54 

24 45 

23 35 

56 

56 

24 45 

A\ = 2,3,3,3,3,2 

7 

6 

8-0=8 

14-4-3=7 

4 

1 

0 

33 

Figure 3. Illustrations of face graphs and monocycle enumeration. 

increase in the size and potential number of cycles in F and 
so limits simple formulas for Cn to CA, although the princi­
ple holds for more polycyclic molecules. However, the 
counting may be approached from the other end, e.g., Cro = 
I.13 Determination of the (relatively few) large monocycles 
available by fusing (ro — 1) and (̂ o — 2) faces may quickly 
be made graphically, in the_ former case by counting the 
number of single points in F which may be removed and 
still leave a fully connected graph of (ro — 1) points, in the 
latter case by the number of pair of points (adjacent or not) 
which can be similarly removed, leaving a connected graph 
of (/-o — 2) points. 

For the Ct, enumeration (i.e., of monocycles created from 
four fused faces), we need to count all the four-point con­
nected subgraphs in F, of which there are six possible 
kinds.14 This is most easily achieved from a reduced line 
graph of F, following this protocol. The line graph L is con­
structed such that each point in L corresponds to a line (ij) 
in F and each line in L connecting these points is an indica­
tion that these two lines in F are contiguous (meeting at a 
common point).15 Following this, those triangles in L which 
correspond to triangles in F are deleted (lines of the triangle 
only) to leave a reduced line graph L', for which the degrees 
of the points (rf',y) are then listed. The same formula as for 
Ci, involving combinations of these degrees and subtraction 
of redundant triangles in L/, is now shown for CA in Table I 
but adds a second redundancy or correction factor based on 
the number of squares in F (not in L);14 the factor (S) adds 

the number of crossed squares14 and deletes 3 X the num­
ber of plain (open) squares. 

It is the rapidly increasing number of kinds of «-point 
connected subgraphs to be counted14 which renders calcula­
tion of Cn above CA laborious; while there are, for example, 
six kinds of connected four-point graphs,14 there are 20 
kinds of connected five-point graphs.7 The overall proce­
dure for enumerating all the various kinds of monocycles in 
up to heptacyclic structures is, however, very easy (especial­
ly for six or fewer fused rings, not counting CA via the re­
duced line graph). This is summarized in Table I16 and il­
lustrated in Figure 3. It may be added that, for simple lin­
ear face graphs, F, such as in the steroid skeleton, the total 
number of monocycles is given simply by ro(ro + l)/2 (for 
steroids, 2C„ = 10). 

Apart from monocycles, it is also important to define and 
enumerate all other /--cycles (bicycles, tricycles, etc.) con­
tained within the given structure. These will be all combina­
tions of all independent monocycles with each other. For 
our purposes, the r monocycles which compose an /--cycle 
(within the ro-cycle total skeleton) need not all be fused; 
e.g., ring A and ring C of the steroids constitute one (un-
fused) bicycle contained in the skeleton and ring A with the 
perimeter of rings C/D another. 

The categories of possible kinds of combinations must 
first be clearly defined since an /--cycle is made from r mon­
ocycles which in turn can be severally derived by fusing var­
ious numbers of original skeletal faces. The kinds of mono-
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Table II. Categories and Enumeration of/--Cycles 

Categories3 for rQ = 1 

Monocycles (r = 1) 1 

Bicycles (r = 2) 

Tricycles (r = 3) 

Tetracycles (r = 4) 

Pentacycles (r = 5) 

Hexacycles (r = 6) 

Heptacycles (r = 7) 

Number of categories: a1 

2 

2 

11 

3 

3 

3 

12 

111 

6 

4 

4 

13 

22 

112 

1111 

11 

5 

5 

14 

23 

113 

122 

1112 

11111 

18 

6 

6 

15 

24 

33 

114 

123 

222 

1113 

1122 

11112 

111111 

29 

7 

7 

16 

25 

34 

115 

124 

223 

133 

1114 

1123 

1222 

11113 

11122 

111112 

1111111 

44 

Enumerations 

C m . . 

Cm.... H = Cn(^Yj 

C m . . . . mn = cmn ( ~ 

C22 = 1/2[e(e+1)-S=df] 

(m+n) 

Cz = number of r-cycles in category z for a structure with r0 fundamental rings; z contains r d igits 

a = The categories for any skeleton of r0 rings include the numbers (z-list) in its r0 column plus those in al 
columns to the left. 

cycles were defined with a single digit, n, indicating the 
number of fundamental rings (faces) fused to create them. 
Hence in a parallel vein, the /--cycles can be defined by a 
list, z, of r digits, each of which indicates a monocycle and 
shows how many faces were fused to create it. The sum of 
the r digits in the z list must be </-f> These z lists are there­
fore category designations, and the total number of actual 
/•-cycles in any category for a given skeleton is C2 as before, 
where z is the designating list. Hence C\ 3 is the number of 
bicycles composed of one fundamental ring and one mono-
cycle made up of three fused fundamental rings, as in a ste­
roid with rings A, B, and C opened into one 14-membered 
ring (C13 = 2 for steroid skeletons). A table of possible 
categories for structures up to heptacyclic is offered in 
Table II along with combination formulas for enumerating 
C2 for most of the categories; the numbers of examples (C7) 
in larger categories are usually small and easily determined 
by inspection of F. In any case, the formulas shown are ade­
quate for enumerating all /--cycles in structures up to penta-
cyclic. For example, the number of bicycles Ci 3 (of one face 
and one monocycle made of three fused faces) possible in a 
heptacyclic (r0 = 7) skeleton is given by Ci 3 = CiC2Z]) = 
4C3, and the number of tetracycles Ci 122 in that skeleton 
(r0 = 7) is C1,22 = C22(U2+2 ') = C22C2) = 3C22. A formu­
la for C23 is apparently attainable but complex; i.e., the 

number of bicycles in which one cycle is two fused faces, 
and the other is three (only possible in skeletons which have 
five or more faces). 

In summary, the basis for /--cycle counting in F in the 
equations described above (and shown in Tables I and II), 
or by inspection is one of finding (for Cn) all sets of fl­
unked points in F to represent monocycles of n fused rings, 
for Cin all combinations of the sets of /i-linked points with 
any other single points, and for Cm„ all combinations of the 
sets of m linked points with the sets of n linked points. In 
the latter cases, the m-linked set and the /i-linked set of 
points may not have points in common. 

The individual r-cycles themselves may be designated by 
a bracketed list of numbers corresponding to the involved 
fundamental rings or faces; those that are fused into a larg­
er monocycle are enclosed in parentheses. 

Examples of r-cycle designations are illustrated (see Fig­
ure 4): 

[(12)3]:bicyclic(r = 2); category: 2 = 12 

[12346]: pentacyclic (/• = 5); category: 2 = 11111 

[1(234)6]: tricyclic (/• = 3); category: 2 = 113 

[(346)]: monocycle (/• = 1); category: z = 3 
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Categories (z) 

Monocycles 

Rings, labels, and ring size 

Bicycles • 

^ O O O o 
Ml [2] !3] [4] 

Pi=6 p :=6 p :=6 p4=5 

2_ 
C2=3 

3_ 

C,=2 

Cj = I 

CO Co 
[112)) p=10 '.(23)] P=IO [(34)] p=9 

R 

0 
1 
2 
3 
4 

0 

0 
5 
4 
4 
4 

1 2 

5 4 
0 1 
1 0 
0 1 
0 0 

3 

4 
0 
1 
0 
1 

4 

4 
0 
0 
1 
0 

Row 
Sums 

17 
6 
6 
6 
5 

(P d? 
((123); p = 1 4 [(234)! p-13 [112341] „=17 

CUO^O 
C1 ,=6 

12 

C,.=6 

COCr1COo0O0O 
[12] [23! [34[ [13] |24] [14 

^ P=H ,J= 11 P=IO p=12 p = l l /j= 11 

be? C o 0 C O ^ o 0 0 C ? 0 
[I121 3! 

V^ P=15 

f 

[(12! 4 

P= 15 

13 

C,,=2 

[1 (23)' 

/-=15 

[(23! 4] 

u' 14 

[1(341] [2(341] 

p=15 P=14 

1(12314] /,= 16 I2341] /j=1E 

22 

C = 

Tricycles — 

CC?0 
(112) (34)] 

p=19 

111 

C , „ = 4 

112 

C1 1 2 = 3 

[123] 

P= 16 

(12) 34] 

p=19 

O OO 
[124] 

p=16 

[134] 

/0=16 

[234] 

P= 15 

[1 (23) 4] 

p=19 

[12 (34)] 
p=19 

Tetracycles - 111 1 (C , , , ,=11 - full skeleton [(1234)] above: p=b„ = 20, 

- C = 33 in 11 categories (z-lists) 

Figure 4. The /--cycles contained in the steroid skeleton. 

The 33 /--cycles (in 11 categories) in the steroid skeleton are inspection or from the ring matrix, R, in which the row 
assembled and labeled in Figure 4. sums are the sizes (p, = S,/3,y) of the corresponding funda-

The ring size, p, is defined as the number of bonds in the mental rings. The zero row sum gives the size of the exter-
r-cycle, also illustrated in Figure 4. These are obtained by nal periphery, i.e., the bonds of the exterior face. The size of 
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other r-cycles is obtained by adding the row sums of all fun­
damental rings involved in the r-cycle label and substract-
ing all row-column intersections in R that are common to 
rings in any parentheses. The complement of p is Oh^i xj^u 
— p), the remaining number of ring bonds in the skeleton. 
The complement of p corresponds to the cutset subgraph, 
F', of F which is disconnected on cutting the parent skeleton 
down to the particular r-cycle described. The size of the 
parent ring system (ro-cycle) is PQ = bo — a. 

When a particular r-cycle is generated by cutting a set of 
lines (F') in F, the graphical operation is one of removal of 
the line (corresponding to a |8-type bond) and coalescence of 
its joined points (ij) into a single point (skeletal ring), la­
beled ring (ij). Any pair of lines joining i and j with a third 
point k (usually "0"), i.e., forming a triangle with the dis­
connected line in F, is similarly coalesced into a line (ij) — 
k. This new line is characterized by a new /? value (number 
of skeletal bonds of one /3 type) which is the sum of the two 
coalesced; i.e., £(//)* = (3ik + fyk- When this operation is 
carried out on F, sequentially removing the lines of the cut­
set F' and coalescing the remaining points and lines as de­
scribed, the graph remaining is the face graph of the /--cycle 
generated, as shown in operation 1 for generating the bicy­
cle [(12)4] of the steroids. 

1 * 2 j [1234] 

I (12) J [(12)4] 

The graphical procedures outlined here are easy to use 
and allow definition and enumeration of all the cyclic syn-
thon types in terms of the fundamental rings of the full skel­
eton which they contain. Hence a catalog of all possible 
contained rings—as monocycles, bicycles, tricycles, etc.— 
can be generated (as in Figure 4) with a view to seeing all 
possible combinations of rings in sets of starting materials. 
In general this catalog is generated by finding all the cate­
gories in Table II and enumerating the number (C2) of 
each. Theindividual r-cycles so defined and enumerated are 
easily located by inspection of F and the skeleton itself. In 
principle mechanical generation of the individual r-cycles 
may proceed by making all possible combinations of c cuts 
from the e ringbond types (one cut from each type /8y), 
which means 2C('), for c < e, generating operations, as in 
(1). The illustration 1 is one of (2) = 21 ways to cut two dif­
ferent ring-bond types, in this case /812 and #03, of the e = 7 
available for the skeleton. However, this procedure is re­
dundant, producing some starting material ring types more 
than once (e.g., with steroids, cutting /J03 and /3o4 yields the 
same bicycle [12] as does cutting ,803, /J04, and f}i4). Thus, 
for steroids, the mechanical generation yields 2C(') = 7 + 
21 + 35 + 35 + 21 + 7 = 126 operations giving only the 33 
different r-cycles in the catalog of Figure 4. 

Such a catalog offers insights into the different modes of 
constructing the target skeleton. However, the catalog only 
focuses on rings, not on acyclic bonds (or their absence). 
Therefore, each individual r-cycle defined in the catalog 
will be a set of starting materials with the defined rings and 
acyclic atoms variously linked or not. Operation 1 shows a 
single bicyclic synthon generated, but the [(12)4] definition 
of it also fits a four-component set of synthons: a cyclode-
cane, a cyclopentane, and the two remaining atoms of ring 3 
as one-carbon components. There are a total of eight sets of 
[(12)4] synthons further generated by making all possible 

combinations of cuts in the three acyclic bonds shown in 
(1). This added variety in the number of components is ex­
plored in the next section. 

The Construction Tree. A synthesis tree that includes all 
possible routes is clearly enormous, and its size is even un­
clear. We may cope with it in a more manageable way by 
isolating meaningful subsets of the tree; one such subset 
would be the construction tree, dealing only with reactions 
creating skeletal bonds and ignoring not only functionaliza-
tion reactions which do not alter skeleton but also the par­
ticular kind of construction reactions used (alkylation, acyl-
ation, carbonyl addition, etc.). We can see the levels of the 
tree as successive construction steps toward the target skele­
ton. The levels or nodes of the tree may then be grouped ac­
cording to number (k) of synthon components17 and num­
ber and kind of r-cycles in the synthons. 

The target skeleton (T) of no atoms, ro rings, and A0 
bonds is considered to be created by sequential construction 
of all or some of its bonds from all possible sets of precur­
sors. The precursors are themselves sets of smaller synthon 
components (starting materials) totaling the no atoms of the 
product; these precursor sets of smaller molecule skeletons 
are labeled prestructs, understood as a total of no atoms, r 
rings, and k synthon components. A prestruct of tetrameth-
ylethylene (no = 6) could be the three-component set of 
ethyl isobutyrate and two molecules of methyllithium (no = 
4 + 1 + 1); the atoms in the ethanol liberated from the 
ester are ignored as not appearing in the skeleton of the 
product. This prestruct would stand as two construction 
steps (two C-C bond formations) away from the target te-
tramethylethylene in its construction tree, the functionali-
zation step of dehydration of the initial alcohol formed 
being also ignored here. 

This construction tree can be conveniently expressed as a 
coordinate system, the construction grid, illustrated in Fig­
ure 5. The vertical axis of the grid records the number of 
components (k) in any prestruct at that level, while the hor­
izontal axis records the number of (fundamental) rings (r) 
in the prestructs with that coordinate. The final target (Ti) 
is found at r = r0, k = 1 at the extreme lower right. The 
other points represent sets, R*, of prestructs of r rings and 
k components (and no atoms in all cases); the number of 
prestructs in the set R* is Nr,k - \Rk\- The horizontal (ring) 
axis is labeled with letters to distinguish number of rings: A 
= monocycles (r = 1), B = bicycles (r = 2), etc., with O 
used for acyclic (r = 0) prestructs.18 The number of compo­
nents (k) is appended as a subscript. The prestruct 
0„o(-No,/!o = I OnJ = 1) is a set of no single atom synthons, 
i.e., the ultimate classical synthetic precursors: coal, air, 
and water. The component maxima, Mn represent the most 
components possible with r rings present (Mr = lim k for r 
rings). For the steroid ring system (no = 17), Mi = 13 com­
ponents, i.e., the smallest (p = 5) monocycle and the re­
maining 12 atoms as single carbon synthons. Similarly, M4 
= 1 (no acyclic bonds to cut into extra components) and M3 
= 5 (the smallest tricycle, rings 234, plus the four extra sin­
gle carbons of ring 1). For a C21 steroid-like progesterone, 
there are four acyclic bonds (a = 4) so that M4 = 5, while 
M3 ='9. 

Each line on the grid is a vector indicating one construc­
tion step (down or to the right, toward T) or the reverse 
cleavage (up or to the left, away from T). The horizontal 
vectors are intramolecular: cyclization (right) and ring 
opening (left). The vertical vectors are intermolecular, put­
ting two synthons together by forming one bond (down) or 
cleaving a skeleton into two (up). The term affixation is of­
fered for the former, the intermolecular reactions linking 
two separate synthons by formation of one a bond between 
them. The four-coordinate directions are then cyclization 
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Figure 5. The construction grid. 

Target skeleton (r0 rings, n0 atoms, b0 bonds) 

Number of bonds disconnected from Ti 

monocycles, bicycles, tricycles, etc.; r = 1, 2, 3 . . . respectively 
(O = acyclic synthons, r = 0) 

General column of r rings 

Number of synthon components in each prestruct, with maxima M r 

for any r-cycle column (A, B, C, etc.) 

Any intersection, a set of prestructs, all with n0 atoms, 
k components and r rings 

N r,k 
Number of prestructs in set R t 

Ar + Ak = r0 • r + k - 1 

nn + r„-1 

bonds in rV = n0 + r-k = b0'X 

(Ar = I, Ak = 0), ring opening (Ar = - 1 , Ak = 0), af­
fixation (Ar = 0, Ak = — 1), and cleavage (Ar = 0, Ak = 
1). Annelation reactions may be seen as the diagonal con­
version (Ar = 1, Ak = —1), affixing a synthon and cycliz-
ing it in two steps (two bond constructions), i.e., R^ —*• (R 
+ l)t_i. 

The construction tree levels are now the diagonals back 
to the left from Ti to O„0, labeled as X, the number of links 
or bond formations required for a prestruct to go to Ti. The 
family of sets of prestructs at level X is S\ and numbers \S>\ 
= (xc), i.e., the number of prestructs missing X bonds of the 
final skeleton Ti (=Sn). Interrelating equations are given 
below Figure 5, which summarizes this description of the 
construction grid.19 With this framework, the total numbers 
of prestructs, Rk, for a given skeleton may be calculated 
and hence the total possible ways to construct the skeleton. 
For any given synthesis, all starting synthons are assembled 

as one prestruct of «o atoms.19 k components, and a total of 
r fundamental rings at level X. The synthetic sequence, or 
rather just its construction steps, is then a pathway down 
and to the right from Rk to T1. A direct route is a path of X 
constructions, consisting only of affixations and cyclizations 
(including annelations); an indirect route contains one or 
more cleavage (or ring-opening) steps. 

Several pathways representing various successful steroid 
syntheses4 are shown on the partial C21-steroid grid in Fig­
ure 6. These pathways show quickly the cycles in the pres­
tructs, the length of the route, the construction modes var­
iously elected, including indirect routes, etc. None involve 
more than six starting material components, and the later 
syntheses usually involve fewer components and fewer con­
structions. Several involve ring openings (usually contrac­
tions of ring D), shown as horizontal loops. Of those shown 
only Johnson's biomimetic route builds an acyclic precursor 
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(ABD) . 

®-

A -
D--

Progesterone (Johnson) — 288 • — 

Cholestero l ( C 2 1 on ly ) (Woodward ) - 96 <$>— 

Epiandrosterone (Johnson) - 170 A ~ 
Adrenosterone (Velluz) - 4 D— 

Cortisone (Sarett) - 130 
Estrone (Smith) - 180 
Estrone (Torgov) — 181 
Adrenosterone (Velluz) - 1 

NOTES: Grid shown is part of that for C2, • steroids; r-cycle subsets (labeled 
with steroid ring letters) shown in parentheses for starting prestructs; 
references are to page numbers in ref. 4. 

Figure 6. Representative steroid syntheses on the grid. 

(from O4) first, and it carries out three cyclizations at once 
(Ai —»• Di'), followed by two simultaneous ring opening 4-
recyclization steps (D/ -»• Bi —• Di). 

These illustrated pathways in Figure 6 represent families 
of single synthetic sequences through the construction tree, 
and the grid is simply a different representation of the tree. 
Examination of Figure 5 shows that—as in the traditional 
representation of the tree—the number of intermediates 
(prestructs) increases as one passes back through the levels 
(X) from the target (Ti) and then decreases as intermedi­
ates become more primitive until it coalesces at the ultimate 
one-carbon intermediates, at O„0. We may now assess the 
sizes of such trees for particular targets by applying enum­
eration combinatorics to the construction grid, both for 
numbers of prestructs at each level and for the number of 
pathways for each through the grid to Ti. 

Enumeration of Direct Routes. In order to appreciate the 
total numbers of possible prestructs, \Rk\, and so the num­
bers of pathways, R* -»• Ti, we need formulas for calculat­
ing \Rk\. and these may be derived in principle as numbers 
of combinations of X bond disconnections on the product 
skeleton, distinguishing disconnections of rings (Ar) from 
those of acyclic chains (Ak). Derivation of these formulas is 
not a trivial nor apparently a previously examined graphical 
problem.20 It increases rapidly in complexity with Ar, the 
number of rings cut, as does the enumeration (above) of 
monocycles from the face graph. The procedure developed 
below and summarized in detailed mathematical form in 

the Appendix is adequate for fully enumerating the con­
struction grid for skeletons which are tetracyclic or less. 
With a little practice and a desk calculator, such an enum­
eration may be carried out in an hour or two.21 

Cuts in a (=fti) bonds result in Ak = 1 per cut, and the 
number of prestructs with all rn rings intact will be the 
combinations of a bonds cut X times, or | Tk\ = (x) = (?-i)-
The first cut in one of the set of ring bonds /3,y results, how­
ever, in Ar = 1 and Ak = 0, while subsequent cuts in that 
same set (i.e., cuts of bonds of the same /3 type) result in Ak 
= 1 per cut since, following the cut in one /3y bond, the oth­
ers become in effect a bonds. The ways in which they may 
be cut is still, however, a matter of combinations; e.g., ring 
1 of the steroid skeleton has 0o\ = 5 outer bonds so that the 
first cut in /3oi can be made (\) = 5 ways, each with Ar = 1 
and Ak = 0, while two cuts can be made (i) = 10 ways with 
the second cut leading to k = 2 components, thus generat­
ing ten prestructs of two components each. The number of 
resultant prestructs with x cuts in one bond type /3,y is Nx = 
(t''). If two independent rings are cut, then all partitions of 
the x cuts between the two rings must be used, and any sin­
gle selection of some (u) cuts in one ring allows all combi­
nations of the remaining cuts (t> = x — u) in the other ring, 
resulting in a total number of prestructs for x ring-bond 
cuts (eq 2). 

Nx 
= 2 " r W ( " ) w h e r e * = " + y (2) 
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Table III. Different Ways to Reduce Number of Structure Rings 
by Multiple Bond Disconnections 

Ar e' c'= Ak Cutset Subgraphs F' 

1 1 0 • • (K2) 

2 2 0 • • • 

3 1 A <K3> 

This leads to an expectation that the general number of 
prestructs for x /3-bond cuts will include summation of all 
possible partitions of x into u, v, w, etc., with all possible 
combinations of fty terms taken together as in eq 3. 

«,.„, w..e)C)«.... 
where x = u + v + w+... (3) 

This implies that the number (e') of types of 0-bonds cut 
(and the partitioned number of cuts in each, u, v, w, etc.), 
which is the number of parentheses in the combinations 
product, will also equal the number of rings cut, Ar, and 
allow the statement of the number of components per pres-
truct to be k = x — e' + 1. This is, however, necessarily true 
(i.e., e' = Ar) for cuts into no more than two /8 types (e' ^ 

2), i.e., eq 2. Complexity arises when three or more /3 types 
are cut, owing to a feature of the skeleton graph, and this is 
best understood by examining the possible sets of cuts. 

The face graph (F) is a set of (r0 + 1) points, and e lines 
representing the different types of fi bonds. The set of /3 
types which is cut then constitutes a subgraph of F called 
the cutset subgraph (F'), which is not necessarily a con­
nected graph. The points in this subgraph (r') are the faces 
of the skeleton which are cut into and are equal in number 
to the number of different i, /' ring numbers in the several 
fitj which are cut; the number of lines (e') equals the num­
ber of different types of ft bonds cut. Furthermore, each 
cycle in the cutset subgraph corresponds to an increase in 
the number of components equal to Ak = 1 in the resulting 
prestruct of the product structure. (Alternatively put, when­
ever the several /J-bond types cut constitute a complete 
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Figure 7. Construction grids for selected terpene skeletons. 

cycle in F thus removed, the result is an increase of AA: = 
1). This means that, if the x ring cuts are each into a differ­
ent /3 type, i.e., if x = e', then e' = Ar + Ak = Ar + d, 
where c' is the number of cycles in the cutset F'. 

The cutset (F') thus defines the minimum requisite Afc = 
c'. The result is that three ring cuts, if a triangle in F', only 
reduce the number of rings by Ar = 2, where otherwise it 
would be Ar = 3. This may be seen in the steroid by com­
paring three cuts into /3oi, #02, and /3o3 (with Ar = 3) and 
three cuts into /SON /3O2, and /3i2 (a triangle in F', removed 
from F), yielding only Ar = 2. Similarly Ar = 2 for cutting 
/323,1824, and $u or 024,1825, and /345 in the second structure 
of Figure 3. If four rings are arranged (such as 2, 3, 4, 5 in 
the second structure of Figure 3) so that their face graph is 
the maximum graph on four points, all six different /3-type 
bonds can be cut while reducing the number of rings by 
only Ar = 3 (since c' = 3). 

The number of ways of cutting a polycycle to result in a 
given decrease (Ar) in the number of rings is thus a func­
tion of the kinds of subgraphs contained in F, and these in­
crease rapidly as Ar increases; this is summarized in Table 
III and is the reason that the collection of formulas for \Rk\ 

given in the Appendix was not pursued beyond Ar = 3, 
which already contains nine possible cutset subgraphs and 
four ways to achieve Ar = 3. For Ar = 4, there are 29 cut­
set subgraphs and seven ways with 4-10 bond types cut 
(Table III). 

Taking the ring reductions of the cutset subgraph into ac­
count for all the kinds of triangle and square subgraph cy­
cles in Table III and multiplying the combinations so ob­
tained for ring cuts (x) with those obtained for cuts in the 
acyclic a bonds (X — x cuts), one obtains combinatorial for­
mulas for numbers of prestructs (Nr,k) at any point (r,k) on 
the grid back to Ar = 3 from Tj . These general formulas 
are laid out in the Appendix. The formula of eq 3 is still 
basic but, as shown in the Appendix, is separately formulat­
ed for each of the subgraph-cycle types of Table III, and 
these totals (N') are added and subtracted as required to 
obtain particular totals Nr,*. It is possible to extend them to 
Ar = 4, i.e., to serve for tetracyclic skeletons, by invoking 
the known total prestructs \S\\ = (*°) at any level X. For te­
tracyclics Ti = Di on the grid, and columns A, B, C, D may 
then be enumerated, leaving the acyclic precursors (column 
Ok) to be obtained by subtraction from \S\\. 
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(Actual synthesis of sequence (4) shown with arrow.) 

Figure 8. The monocyclic prestructs of camphor (k < 3). 

Three terpene skeletons are enumerated as illustrations 
in Figure 7, in each case showing the full skeleton with at­
tached acyclic bonds as well as the numbers of possibilities 
for the ring system alone (a = 0) in parentheses. The latter 
numbers are much smaller not only because the skeleton 
has fewer atoms (ring atoms only) but mostly because of 
the rapid rise in numbers of prestructs when all the combi­
nations of disconnected acyclic bonds are included. With Ri 
sets, which are fully connected, however, the numbers are 
the same with or without inclusion of the a bonds. 

By way of illustrating these grids, we may note the classi­
cal synthesis of camphor, shown as skeletal construction 
steps only in sequence 4; the addition and loss of the extra-

COOR 
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COOR 

CH3I COOR 
(O3) 

.COOR 

COOR 

CH5I COOR 

(A2) 

(COOR) ~ 

COOR 
(4) 

*0 
(B1 -T1) 

neous carbon (after Ai) does not figure in the grid as the 
carbon is not one which appears in camphor.19 This se­
quence begins with one of the 295 possible three-component 
acyclic prestructs enumerated for O3; this is converted by 
annelation to A2, methyl affixed to Ai, and cyclized to Bi; 
the sequence is shown in boldface on the grid in Figure 7. 
Any examination of just the remaining 294 prestructs to 
start camphor synthesis from O3 is already a huge task, and 
with all the other possible starting points equally considered 

it is clear that there are a great many possible syntheses of 
camphor, many of them undoubtedly viable. There are in 
fact about forty million total routes (see below) from sin­
gle-carbon synthons ("coal, air and water")! 

As a partial expansion of Figure 7 for camphor, Figure 8 
shows the monocyclic prestructs, the eight Ai precursors at 
the bottom divided into three subsets each characterized by 
having one of the three monocycles of camphor intact. The 
lowest A2 row shows further dissection of /3 bonds and so 
constitutes the seven A2 prestructs of the ring system only 
(ignoring a bonds), while the 24 other A2 prestructs in the 
top two rows correspond to disconnection of the acyclic (a) 
bonds of camphor. Each of these may either construct an a 
bond, going to the eight Ai skeletons, or construct a /J bond, 
going to the three B2 prestructs (full ring system but two 
components), 24 routes each, the former vertical on the 
grid, the latter horizontal. Each of the seven prestructs in 
the lowest A2 row also has two routes open, but both are af­
fixations, leading to A] structures. The seven possible anne-
lations (see below) from A2 to B] must also occur from the 
seven A2 prestructs of this lowest row. The skeletal symme­
try of camphor, which makes the vertical sets of ring A and 
ring B prestructs equivalent, is ignored here. The present 
treatment deals with labeled graphs, which have no symme­
try, and reflects the possibility of asymmetry due to func-
tionalized sites (see sequence 4). The A2 —• Aj part of se­
quence 4 is shown as a arrow in Figure 8. The detailed defi­
nition of intermediate prestructs in this manner can often 
show important avenues of construction which might not be 
apparent otherwise. This can be most fruitful in the upper 
levels (low X, near Ti) where the numbers are not excessive. 

The full grid for C21 steroids is shown in Figure 9 with 
the numbers of prestructs calculated for each set Ru and (in 
parentheses) those for the Cn ring system only, without the 
four a bonds. The numbers are very large indeed, especially 
for the former. This reflects, of course, the many skeletal 
combinations of constructing a bonds overlaid on each 
mode of building the ring system, but the numbers simply 
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Figure 9. Construction grid for steroids. 

for building the ring system are themselves formidable and 
beyond reasonable manipulation unless drastically reduced 
by some reductive criteria. The numbers of Ri precursors 
are the same for each (Cn or C21) since the a bonds are all 
necessarily connected in the Ri families, and the upper k 
values in each R column are not possible for the Cn ring 
system since any C21 prestructs can have up to four more 
components than the Cn series. The totals \S\\ for each 
level are also shown and reflect the expansion, then contrac­
tion, of the tree back from the target (Ti) as the increase, 
then decrease, of combinatorial values of | .SxI = (*°). 

We may note that the set of starting materials (skeletons 
only) for Johnson's progesterone synthesis at O4 (Figure 6) 
is one of 204,958 prestructs formally available for that 
starting point. In principle these prestructs could all be gen­
erated by computer since the formulas developed above rep­
resent an algorithm capable of defining what each prestruct 
actually consists of. Many of these at O4 will represent a 
single large synthon (no < 19) coupled with three small syn-
thons (Ci or more), and many of these are only available 
themselves by synthesis (implying a true starting point 
higher up the T column). Thus many of these starting pre-
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Figure 10. Construction grid for a tricyclene skeleton. 

structs could be eliminated and the total reduced if they 
could first be matched by computer with the skeletons of 
available starting materials. Alternatively, if we had a 
smooth procedure for calculating the numbers of prestructs 
of different partitions by size (n\' + m' + nj,' + .. . . = no), 
we could also eliminate prestructs which involve excessively 
large synthons. However, this is a very difficult combinato­
rial problem.7,17 The adjacency matrix (A) contains the in­
formation since A" is a matrix, each element (ij) of which 
shows the number of paths (of length «) through the mole­
cule (graph) from atom / to atom j , and this describes a lin­
ear «-bonded synthon linking i and j . The procedure works 
for enumerating (and defining) the two-carbon synthons 
from A2 and the three-carbon synthons from A1, but the 
latter requires an adjustment owing to the redundancy of 
triangles, and the redundancy becomes serious for A" with 
n> 3. 

An alternate, though more limited, approach to enumera­
tion is the matrix-tree theorem in graph theory applied to 
the product skeleton. This theorem (ref 7, p 152) allows the 
number of spanning trees,18 |Oi|, to be calculated. A ma­
trix, M, is obtained from —A (the adjacency matrix of the 

skeleton with nonzero entries made equal to —1) by substi­
tuting the degree (o-,)lb of each skeleton atom in the /th di­
agonal entry. (The row sums of M are therefore zero.) 
Then, removal of any row and corresponding column yields 
a determinant, evaluation of which affords the number of 
spanning trees,22 i.e., the number of acyclic, one-component 
(fully connected) prestructs, |0 i | . For the tricyclene skele­
ton in Figure 10, |Oi| = 49, obtained either way; for cam­
phor likewise |Oi| = 21, for pinane, 20. Appended acyclic 
bonds do not change the result for | R i|, as Figures 7 and 9 
show; hence the matrix-tree approach is more easily ap­
plied to the ring system alone. 

It has apparently not previously been noted that M may 
also be used to evaluate \A\\ and indeed any |/?i| for skele­
tons with all rings fused (connected F). For each defined 
monocycle subset of Ai, the rows and columns correspond­
ing to the atoms which constitute that monocycle are simply 
removed from M, and the remaining determinant is evalu­
ated to yield the number of possible (k = 1) prestructs con­
taining that monocycle as the only ring.23 In Figure 1, the 
number of monocyclic prestructs containing only ring 2 
(atoms 14567) is 5, containing only ring 3 (atoms 345) is 
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12, containing ring (123), i.e., atoms 12356, is 5. The value 
of | ^ i | is the sum of these values for all monocycles [there 
are seven: 1, 2, 3, (12), (13), (23), (123)], in this case, \AX\ 
= 33. Since F is connected in Figure 1, jfii| may similarly 
be found as the sum of the calculations for bicycles. 

A more general enumeration of these /--cycle subsets of 
R* may be made with the formulas in the Appendix. These 
formulas are simply applied to the parent skeleton with the 
characteristic /3,; values of the particular r-cycle disallowed 
in calculation. In this way, one is computing all ways to cut 
the parent skeleton to RA without touching any bonds be­
longing to a particular r-cycle. 

When the points (intersections) on the construction grid 
have been enumerated as \Rk\, the number of synthetic 
pathways is readily computed. Any prestruct in RA lacks X 
bonds from the product. Making some of these may be cy-
clization (horizontal), others may be affixation (vertical). 
But the sum of the direct routes leading out from RA must 
be X|i?*| as the sum of the routes leading in to RA must be 
(b0 — X)| .RAI . This amounts to enumerating the routes cor­
responding to the lines of the grid. For most points RA/ 
there is both a horizontal and a vertical way in and a similar 
pair of ways out; only the sums for these pairs are so enu­
merated. But for certain points on the periphery, one of the 
pair is zero. Thus there is only one way in (horizontal) and 
one way out (vertical) for T -̂max = TA/, the highest point 
on the T column, and the same is true for the highest point 
on each column (RA/). Also, for O*, there is only a vertical 
way in, for T* only a vertical way out, and for R\ only a 
horizontal way out. It is also true that the number of routes 
out of RA vertically equals the number of vertical routes 
into RA-I , i.e., there is only one number enumerating the 
routes corresponding to a line between two points; if it is 
evaluated from one point, it holds for the other. The rela­
tions are summarized in Table IV, taking V,,A and Hr,k to 
symbolize vertical (intermolecular) and horizontal (intra­
molecular) routes leading into RA, and \rk and H,,A the 
corresponding routes leading out. 

All the possible routes may be enumerated starting with 
column TA and evaluating V for each link down the column 
from TA/. This leaves H_to be evaluated by subtraction, and 
this in turn represents H for the ( T - I ) column and fol­
lowing this the V and V values for ( T - 1), etc., until the 
grid is complete. The number of overall direct pathways 
from RA to 1\_ is now the product of all the links along the 
path chosen, H or V. Alternatively, the number of ways into 
or out from RA, or r-cycle subsets of RA, can also be com­
puted directly by formulas given in the Appendix, analo­
gous to the I RA| enumeration formulas. It is enough to enu­
merate horizonta] (cyclization) lines HrA and Hr,A since 
vertical ways (V1V) are obtained by subtraction from )J[Rk\ 
or (b0 - X)| Rk\, as in Table IV. 

Horizontal (cyclization) paths in to RA are very easily 
determined for the individual r-cycle subsets as p = 2/Jy 
which characterizes any particular r-cycle. The total Hr,A 
for RA is then the sum of these p values for the separate r-
cycle subsets of RA. The horizontal ways out (H,,*) from RA 
may be obtained from the previous enumeration formulas 
when it is noted that only one cut in a /3y bond of the parent 
is allowed if the resultant RA prestruct is to be capable of a 
one-step cyclization to (R + 1)A. Also it may be noted that 
the multiple cuts in different /3-type bonds which character­
ize triangle and square subgraphs of F' (i.e., TV2], W3I, 
W32, W33 in the Appendix) result in prestructs in RA which 
are incajmble of one-step cyclization. The resultant formu­
las for Hr,A are included in the Appendix. They may be ap­
plied, as with Nr.k = \Rk\ enumerations, either to the full 
set RA, or to its r-cycle subsets of disallowing the e,(/?,y) 
values characterizing the r-cycle of the particular subset in 
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Table IV. Enumeration of Routs into and out of Prestruct Sets 

Vr,k + Hr,k = ( b ° " X ) lRk l = (n° + r-k) Nr,k 

\ k + Sr,k = X l R k l = ( r°" r + k"1 ) Nr ,k 

Vr,k - vr,k+1 H
r iM = (n0 + r-M) Nr 

V'-k = > " 1 "r.1 = (r0-r)N r 1 

Hr,k = Hr-1,k VoJ< = (n0-k) N Q k 

Hr,k = Hr+1,k V k = ( k - 1 > N r 0 , k 

Ho,k " Hr0,k " Vr,M ~ Vr,1 _ ° 

V r k = (r0-r + k ) N r k + 1 - H r + U + 1 

Hr,k = (n° + r ' k ) Nr,k ~ Vr,k 

the computation. 
The total number of overall construction pathways (di­

rect routes only) may be seen more simply (lumping H and 
V) as the product of all X|5x| terms from the starting level 
(X) of RA to S0 = Ti. 

Total direct routes from RA to Ti = X!|/?A| = (ro — r + k 
- \y\Rk\. 

Total direct routes from Si0 = O„0 ("coal, air and 
water") = brf. Thus the number of possible direct routes is 
enormous, but it is not infinite. The total overall direct 
routes to camphor number 39,916,800 and for C21 steroids, 
2.4 X 1018. It is of course many times more if longer, indi­
rect pathways are used (next section). 

An expansion of the construction grid by ring types is 
possible, as shown in Figure 11, by breaking down each in­
tersection point, RA, into its r-cycle subsets. These may be 
enumerated separately, as noted above and in the Appen­
dix. The network of horizontal (cyclization) lines into and 
out of each such subset will now connect it to a number of 
different subsets of ( R - 1)A and (R 4- 1)A as illustrated in 
the k = 2 row of Figure 11. The sets in columns O and T, 
however, cannot be so differentiated so that all cyclization 
ways leading in to the several monocyclic subsets of AA 
must originate in OA and all ways out from the different (r0 
- 1) ring systems of (T - 1)A must go to TA. As noted 
above and in the Appendix, formulas for enumerating H 
and H for the separate subsets are available. 

The vertical lines, however, remain simple and parallel, 
reflecting that, in an affixation of component synthons (Ar 
= 0, Ak = — 1), the particular r-cycle ring system necessar­
ily remains intact up any subset column of RA, unchanged 
by interconversions vertically. To clarify this, note that each 
of the ten defined monocycles (such as 1,2, (12), (1234), 
etc.) of the steroid (Figure 4) or the three of camphor (Fig­
ure 8) represents a single subset of Ak, and that the defined 
ring is present no matter how divided the rest of the pres­
truct is into synthons, i.e., no matter whether k = 1, 2, 3, 
etc. Hence the vertical (affixation-cleavage) interconnec­
tions (interconversions) are all single vertical lines, each 
characteristic of particular single r-cycles. A fully expanded 
construction grid for the tricyclene ring system (with no a 
bonds) is illustrated as Figure 12. The intermixed cycliza-
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k=4 

k=3 
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Figure 11. Expanded construction grid with /•-cycle subsets. 

tion routes from Ai -* Bi and A2 -* B2 are simply collected 
and enumerated from each side without showing the de­
tailed links from one subset to another. The numbers here 
can be expanded into the real skeletons of the various pres-
tructs as done for camphor in Figure 8. 

The number of annelations which create any given r-
cycle subset of Rk, from (R - l),t+i, may be enumerated 
also, given the /3y values which characterize the /--cycle of 
the subset. Annelation is defined as two constructions, one 
affixing and one cyclizing (Ar = 1, Ak = - 1 ) , an annela­
tion forming R* designated as Ar,k- This requires the for­
mation of two bonds of the same /3 type. Thus for the target 
(Tk) column 

^-m 
and is the same for all values of k. For /--cycle subsets in R*, 
the same is true as long as the /3 values used are those for 
the graph of the /--cycle, generated from (F - F') by line 
and point coalescence as described before. These new /3 

values for an /--cycle, easily defined by inspection, may be 
listed serially as e/ so that Ar_k = £,(2' )• For monocycles, 
the number of annelations if (§). Annelations may conve­
niently be described as (m + n) annelations, in which m 
and n denote the sizes of the two units combined into a ring 
of size p = m + n. Thus carbene addition to olefins is a (1 + 
2) annelation, Diels-Alder cycloaddition is (2 + 4) annela­
tion, and Robinson annelation can be either (2 + 4) or (3 + 
3) annelation. In Figure 13 are listed the numbers of anne­
lations for the 33 steroid /--cycles. The number of (m + n) 
kinds of annelations to a monocycle is then the number of 
partitions of ring size p into two parts, m + n. The lowest 
row of Ai for camphor in Figure 8 represents prestructs for 
A2 —- Bi annelations of the two possible kinds: ( 1 + 4 ) and 
(2 + 3). 

Indirect Routes. Indirect routes are longer than direct 
routes by multiples of two steps."3 The length of the route 
or path is the number of lines traversed on the grid from R* 
to Ti. For direct routes, this is (k - 1) + (ro - r) = X; for 
indirect routes, the path length must be (X + 2«), where n 

Journal of the American Chemical Society / 97:20 / October 1, 1975 



5779 

k = 7 

n„ - 7 
b„ = 9 
in = 3 

a = O 

Figure 12. Expanded construction grid for tricyclene. 

= 1, 2, 3 . . . . Indirect routes necessarily involve cleavages 
(or ring opening; i.e., Ak = 1 or Ar = — 1), the number 
being n in (X + In). Owing to the factor of 2, indirect 
routes rapidly become inefficient by having too many steps, 
and most indirect routes used in existent syntheses include n 
= 1 cleavage (or only occasionally two). 

Rearrangements may be viewed as equivalent to two-step 
transformations, one cleavage and one construction, revert­
ing to the same set, R*. However, the r-cycle subsets of the 
starting and product Rk prestructs are different. Syntheti­
cally the same skeletal change is achieved whether the 
cleavage + construction are carried out (in either order) in 
two steps or in one step via rearrangement. Thus the rear­
rangement of the decalin to hydroazulene skeleton may be 
achieved either by rearrangement of the central bond 
through a leaving group in the 1 equatorial position or by 
ozonolysis of A910-octalin followed by aldol cyclization. 

On the construction grid, enumeration of indirect routes 
which contain only one cleavage (or rearrangement) and re­
quire (X + 2) steps from R* may be analyzed as follows. 
The bond cleaved can be a bond between any two atoms of 

the skeleton which are not actually bonded in the target 
(Ti).24 This implies an analysis of a formal (T + l)i prod­
uct, which is a set of all such possible structures. The struc­
tures in this set will have no atoms, (bo + 1) bonds, and (ro 
+ 1) rings, and the number of structures will be \(T + l)i| 
= (20) — bo. In principle each structure in the (T + 1) set is 
now to be enumerated as outlined in the Appendix. Such 
enumeration is an enormous calculation, even for only one 
internal cleavage in the direct route, since the number of (T 
4-l)i structures is so many; for the 21-carbon steroid skele­
ton (Figure 2), \(T + l)i| = 186 structures to be enumer­
ated. 

In practice, the only viable possibilities to be considered 
for (T + l)i structures are those in which the extra bond to 
be cleaved is part of a three- to six-membered ring and per­
haps also related by requisite functionality to the final func­
tionality of the product. In any case, if we simply focus on 
the number of possible extra bonds added to the structure 
which may be considered for cleavage, the number |(T + 
l)i| above is the maximum number for such cleavable 
bonds.25 They need not be cleaved as the last step in the 
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Figure 13. Numbers of annelations to steroid /--cycles. 

64 

Monocycles 

[1] 15 
[2] 15 
[3] 15 
[4] 10 
((12)] 45 
[(23)] 45 
[(34)] 36 
[(123)] 91 
[(234)] 78 
[(1234)] 136 

[12] 
[23] 
[34] 
[13] 
[24] 
[14] 
[ ( 12 )3 ] 
[ (12 )4 ] 

20 
20 
16 
30 
25 
25 
46 
65 

Bicycles 

[1 (23)] 
[ ( 23 )4 ] 
[1 (34)] 
[ 2 (34 ) ] 
[ (123 )4 ] 
[1 (234)] 
[(12) (34)] 

46 
42 
42 
38 
84 
76 
64 

Tricycles 

[123] 
[124] 
[134] 
[234] 
[ (12 )34 ] 
[1 ( 23 )4 ] 
[ 12 (34 ) ] 

26 
30 
51 
22 
48 
44 
44 

synthetic sequence, of course, so that (T + 1) structures are 
considered for enumeration but the (T + 1) stage need 
never be a point in a given sequence. 

Enumeration of rearrangement possibilities is by contrast 
quite simple since the allowed formal structures in (T + l)i 
must be only those in which the extra bond to be cleaved is 
one which creates a three-membered ring on the product 
structure. Thus the problem is the graphical one of deter­
mining how many triangles can be created by adding lines 
(bonds) to the skeleton graph. Considering that such a bond 
bridges an atom by bonding two atoms adjacent to it, the 

(5) 

possible number must be the sum of binary combinations 
(?) of the a values for each skeletal atom, i.e., zero for a 
primary site (a = 1), 1 for secondary (a = 2), 3 for tertiary 
(<T = 3), 6 for quaternary (a = 4). la The extra bond which 
rearranges can, however, rearrange so as to create either of 
the two "real" bonds of the skeleton which constitute its 
triangle in (T + l)i as illustrated in transformation 5. 

Hence the number of possible rearrangements which can 
be used (at any step in the sequence) will be: 

rearr -1,0 

target (T1) formal (T + I)1 

for 21-carbon steroids (Figure 2), this is 2[3(J) + H(^) + 
5(2) + 2(2)] = 76 rearrangements. These may be broken 
down as applied to ring expansions or contractions, etc., and 
some will be structurally impossible, invoking pentacovalent 
(a = 5) carbons in the precursors. 

It may be noted that the grid as defined takes no account 
of possible syntheses involving synthons en route which have 
more skeletal atoms than the target.1924 The grid concept 
allows in principle more rings than there are in the product 
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so that prestruct sets (T + 1, T + 2, etc.) are possible (with 
r > r0), and cleavable to T, and the product (Ti) is no long­
er the extreme lower right-hand point on the grid. If extra, 
cleavable skeletal atoms were accepted, then the product 
could be Tn, not Ti; i.e., there would be more than one com­
ponent at the end of the synthesis, the other components 
being the extra atoms removed, and the product would ap­
pear in the midst of the grid rather than at the lower right 
corner. This makes a more general but more complicated 
formulation which does not appear important for the few 
occasions in which the sacrifice of skeletal atoms seems a 
viable synthetic approach.26 However, there are such syn­
thetic possibilities which cannot be ignored. Stork's synthe­
sis of cantharidin (ref 4, p 59) involves discarding two of the 
four carbons of the butadiene used in a Diels-Alder annela-
tion, and it could be argued that a rational synthesis of the 
Ci5 picrotoxin skeleton could be a carving down of a suit­
able, available steroid of 20 or more carbons since the abso­
lute stereochemistry is the same (transformation 6).27 In-

^ v V — I C I D ) (6) 

deed the biosynthesis of cholesterol (no = 27) or estrone (no 
= 18) proceeds via squalene and lanosterol («o = 30). The 
biosynthesis of lanosterol itself involves 3C2 —- Cf, —- C$ via 
a one-carbon loss from mevalonic acid. In terms of the pres­
ent treatment, lanosterol biosynthesis is (C2 + Cj + C\ —• 
Cs) X 6, or Oi8 —-....-*• Oi (squalene) -* Dj (compare 
Figure 6). 

In summary, while the synthesis tree is enormous, it is 
possible through definition of its construction subtree as the 
construction grid to examine its size and so to survey the 
scope of the problem of systematic synthesis design, at least 
in terms of construction. As a reflection of the great prolif­
eration in combinatorials, these grids are still impressive in 
size even for small molecules. They can be calculated, how­
ever, and such calculations can offer new insights into 
modes of synthesis for particular target molecules, particu­
larly with respect to defining combinations of rings in poly-
cyclic targets. 

Appendix. General Enumeration Formulas for Intermediates 
and Routes 

Given the definitions and relating equations in Figure 5, 
let x = ring cuts (into 0,y bonds) so that (X - x) = cuts in 
a(ft,), or acyclic bonds. From the face graph (F) and ring 
matrix (R), several lists are first constructed in which the 
0y values of R are redefined as e„ f„, etc., according to 
their participation in particular subgraphs (potential cutset 
subgraphs) of F, as follows: 

(1) e, = order list of nonzero /J,y values from R taken in 
sequence from the right half of the matrix above the diago­
nal. The list will contain e /3 values. If every face is adjacent 
to the outside face (all /3ol- > 0), e\ = |3oi, ej — /802. e3 = 
/3o3,. . . . ero = j3or0. etc. 

(2) tci = matrix (t X e) of triangles in F; there are t tri­
angles, each expressed in one row of the matrix as a list of 
the three e, values composing the triangle followed by all 
other (e — 3)e, values in F, as values tc* -*• tce. The trian­
gles are arbitrarily numbered with the row number (cycle 
number), c (1 < c < t). Each triangle list includes all other 
e, values so that the matrix may be used to enumerate trian­
gles for Ar = 2, e' = 3 as well as Ar = 3, e' = 4 (>— in 
Table III). 

(3) sd = matrix (s X 5) of open squares (D) and simple 

crossed squares (B) in F; there are 5 squares whether 
crossed once or not, yielding s corresponding matrix rows of 
five ei values each, labeled as above with the matrix row 
number (cycle number), c (1 < c < s). The four e,- values 
for the open square are listed first and the fifth item (sc$) 
will be the e, corresponding to a simple cross in 0, if pres­
ent, or to zero if not. Note, however, that, in a collection of 
simple crossed squares, the number of open squares con­
tained is the same except when the K4 subgraph (double-
crossed square (H) or • ) is present: this has three open (D) 
but six simple crossed squares (0). Combining these in one 
matrix allows it to be used for evaluation of modes of cut­
ting to Ar = 3 for both e' = 4 and 5. With any K4 
subgraph, however, the three extra simple crossed squares 
must be added to the list. 

(4) s'd = similar matrix (s' X 6) of double-crossed 
squares (K4 subgraphs) in F, a set of s' lists of double-
crossed squares with six e,- values each. Lists are again num­
bered c (1 < c < s'). These lists, for cutting to Ar = 3 for e' 
= 6, will be uncommon, occurring with three skeletal faces 
all mutually fused, as in tricyclenes (cf. Figure 1) or tetra-
hedrane, or with structures like the second in Figure 3 
which includes a K4 subgraph in the incomplete face graph, 
F. 
Define an operator 

QMb, c,...)= t O H O ••• 
u.v.w... \U/ Vf/ V HV 

x = u + v + w + . . .; u < a; v ^ b; w < c; etc. 

This will be the sum of the products of combinations of a, b, 
c .. . taken u, v, w . .. at a time, respectively, wherein u, v, 
w . . . represent all integral partitions of x. Description and 
use of the Qx operator is further amplified below. 

The enumeration formulas for the construction grid are 
then the following, expressed as functions of given values 
for r, k. 

Ar=O: A ^ * - I T t I = ( ^ 1 ) 

Ar= l:AVu = | ( r - l ) * | - £(" )± («) 
x=] \k—x/ ,= 1 \x/ 

Ar=2:Nro-2,k = \(T-2)k\ = 

Ar = 3: Nro-Xk = \(T- 3)k\ = ^ ( a ) X 
x=3 \k— x+ 2/ 

[(W30)* - (N'2l)x + (N'^)x + (JV32), + (AT33),] 

where 

(N'20)x = eL t Qx(ei,ej) 

1= Iy-/+I 

( A ^ l ) * = t QxUcl.tc2.tc3) 

(A"3o).v = ? eL t Qx(el.eJ.ek) 
1= Iy=/+1 k=j+\ 

I e s 
(W3I)x= 23 ZQAh-utc2.tc3.tci)+ Z QX(ScUSc2.Sc3.Sc4) 

C= 1 1 = 4 c= 1 
J 

(A / '32)* = Z Qx(Sc\,Sc2.Sc3,Sc4.ScS) 
c= I 

(W33)* = Z Qx(s'c\.s'c2.s'c3.s'c4.s'cS.s'c6) 
c=\ 

The two digits in the N' subscript are respectively Ar and c' 
( = Afcmin), and the sum of those digits is the minimum 
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value for x in the Qx combination. The N' terms represent 
special enumerations required which correspond to the pres­
ence in F of the subgraphs in Table III, N'20 and N'21 for 
Ar = 2 and TV30, W31, W32, and W33 for Ar = 3. If these 
subgraphs are absent in the face graph, the corresponding 
W term is zero. 

The following identities are understood for the combina­
tion terms of n things taken p at a time: 

( 1 = 0 for p > n; p < 0; « = 0 (except n = p = 0) 

( 1 = 1 for p = n; p = 0; n = p = 0 

( ) = nfoT p = l;p — n — 1 

The enumerations may be extended to r0 = 4 via the total 
number of prestructs in the family of sets X; thus, in a tetra­
cyclic skeleton, \Ak\, \Bk\, | Q | , and \Dk\ are obtained, and 
I Ok\ arises by substraction from \S\\. 

\Sx\ = (*°);|So| = l^.l = 1;|5,| = b0;\Sb0\ = \Ono\ = 1 

15x1 = |Ox-r0+l| + Mx-ro+2| + |Sx-ro+3| + |Cx-r0+4| + ' -

and 

I Ok\ ~ ( , ) for A: > M\ (M \ = kmaii for monocycles) 
\no-k/ 

The same general formulas for enumeration may also be 
used for defined r-cycle subsets of R^ in which the e, values 
(Pij) which are used in calculation are the complement of 
those characteristic of the particular r-cycle, along with any 
lists of triangles (/„•) or squares (sci) also contained in the 
complement of the r-cycle. 

Horizontal (cyclization) ways out (Hr k) from the pres­
tructs in Ri1 may be directly obtained by enumeration. 

where 

(H '30L = E e, \Y. t Qx-1 (ej,ek)\; (j * i* k) 

(H'2\)x = E tclQx-\(tc2,tci) + tc2Qx-\(tc\.tcl) + 
c=] L 

trtQx-litci.trt) 

( r / '3 l )x= E Qx-lOc\Jc2.tc3) E tci 
c=l Li = 4 J 

As above, these enumerations may also be used for de­
fined r-cycle subsets of R^ by disallowing in the calculation 
those e,- values (/3y) which are characteristic of the particu­
lar r-cycle. 

The a term is always (t+&r-\-x) and represents the num­
ber of possible nonring cut combinations. The enumeration 
values for \Rk\ are not a function of the location of acyclic 
bond appendages to the ring system but only of their num­
ber. For an unsubstituted ring skeleton, a = 0, and the a 
term only exists (and equals one) when k = x + 1 — Ar. 

Definition of the operator Qx for partition combination-
may be further amplified as follows (note that x must be at 
least as large as the number of parentheses): 

««»..)•??(')(»)( < ) 
u=i t,= i \u/ \v/ \x — (u+v)/ 

in general: 
Qx(a,) ;=' = Qx(a],a2,a3, • • .a2,az+\) 

= E £ £...£u(ai)(a% ) 
U l = I U 2 = l i o = l uz=li=l \Uj/ \ X-Z1U1I 

where 

ai>y-,< (x -2 + l)and ( E M1-+ l ) <x> (z + 1) 

Thus 

G , ( 5 , 4 , 3 ) f o r x - 3 i s : Q Q ( J ) - 60 

— O C ) O + ( D O O + 

(DOC)-™ 
— ( D O O + C ) O O + 

(D 0 (D+ (D (D (D+ 

0 0 C ) + O C ) O = -
It may be noted that Qx is a commutative operator, i.e., 
Qx(a, b, c) = Qx(a, c, b) = Qx(b, a, c), etc., and that unit 
terms may be omitted, i.e., Qx(a, b, 1) = Qx-\(a, b) 

Qx(a,b, \,\) = Qx-2(a,b) 

Qx(a, b. c, 1,1, 1,1) = 6,-4(0. A. c) 

Since many e, = 1 for common skeletons and since other 
Ci (Pij) values may be duplicated, some ordering of the 
combinations data vastly simplifies these enumerations. Let 
di represent the unique e, values in the e list, in decreasing 
order, and n, the corresponding numbers of times each di 
appears in the e list. Hence, if d = number of di values, i.e., 
unique e, values, then 

d e d 

E n4< - E e> - (^o — a.) and E "/ = e where (e > d) 
/= 1 1= 1 1= 1 

Combinations of two di values may also be listed as d( and 
«,', referring to the numbers (n/) of possible binary combi­
nations of djdi or djdj (the pairs are listed as d/). Similarly, 
combinations of three dj values (same or different) may be 
listed as d/' and «,". Owing to the frequency of unit terms 
and duplication of e values, it is rarely necessary to have 
lists of larger combinations. The number of ni/dj terms is of 
course d, while the number of binary combinations, n//di', 
is (2+l), and that of ternary n/fdi' terms is (f"2). The sum 
of the numbers of combinations n{ or «," is given by these 
expressions, each term in which is one «/ or m" value in the 
list. 

SH/ 
1 \ 2 ,=1+1 / 

2«/'=ET(I')+ ^"'C?)+ £ £ ""1^l 
1 L \ 3 / j^i \ 2 / j=i+\ k=j+\ J 
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Table V. Steroid Skeleton Enumeration 

elist M/ dj n{ d{ n{ d{' 
Qx Qx 

(5, 4) (5, 4, 4) 
C1-S = (J01 1 5 0 5,5 0 5,5,5 x = 2 20 
e2 = 4 = (30s 3 4 3 5,4 0 5,5,4 3 70 80 
e,.= 4 = (303 3 1 3 5,1 0 5,5, 1 4 120 400 
e4 = 4 = (304 3 4,4 3 5,4,4 5 125 980 
es= I = O13 9 4, 1 9 5,4, 1 6 84 1520 
C6=I = (3„ 3 1, 1 3 5, 1,1 7 36 1636 
« , - l - 0 i 4 r « ' - 9 i 1 4,4,4 8 9 1268 

*•"' " ^ 9 4,4,1 9 1 713 
9 4, 1,1 10 286 
1 1,1,1 11 78 

_ 12 13 
EH/' = 35 13 

(6) The skeleton may Include other atoms if desired, particularly nitrogen In 
rings, and the graphical analysis which follows Is the same. 

(7) A good• Introduction is found In F. Harary, "Graph Theory", Addlson-
Wesley, Boston, Mass., 1969. 

(8) The adjacency matrix of a chemical structure was first described by L. 
Splalter, J. Am. Chem. Soc, 85, 2012 (1963). 

(9) (a) J. T. Welch, Jr., J. Assoc. Comput. Mach., 13, 205 (1966); N. E. 
Qlbbs, IbU., 16, 564 (1969); C. C. Gotlleb and D. S. Cornell, Commun. 
ACM, 10, 780 (1967); K. Paton, IbId., 12, 514 (1969); (b) R. Fugmann, 
U. Dolling, and H. Nlckelsen, Angew. Chem., Int. Ed. Engl., 6, 723 
(1967); (C) M. Plotkln, J. Chem. Doc., 11, 60 (1971); (d) E. J. Corey and 
G. A. Petersson, J. Am. Chem. Soc., 94, 460 (1972); (e) acyclic struc­
tures enumerated by J. Lederbeng, G. L. Sutherland, 'B. G. Buchanan, E. 
A. Feigenbaum, A. V. Robertson, A. M. Duffleld, and C. Djerassl, IbId., 
91,2973,2977(1969). 

(10) Highly articulated polycycllc molecules may serve to Illustrate the usual 
possibility of plane graph representation: copaene, twlstane, longlfolene 
(ref 4, pp 117, 347, 233, respectively), as well as the trlcyclane In Fig­
ure 1 or congressane (Figure 2). The structure below cannot be repre­
sented by a plane graph: 

In this way, combinations of Qx terms (especially in the 
general cutting enumerations W2O, N'30, N'i\) may be 
grouped as 2ijQx(ei,ej) = ^n{Qx(dl) and ItjkQxfa.ej.ek) 
= 1ini"Qx{di") and the possible binary and ternary sums 
for the unique combinations of e values assembled in ad­
vance, i.e., Qx{dudj) and Qx{dudhdk) as a f(x). These lists 
are illustrated for the steroid skeleton (face graph, Figure 
2) in Table V. Hence 

(N'10) 3 = 2ijQ3(ei.ej) = 2*«/G3W,') = 
O X 0 3 ( 5 , 5) + 30 3 (5 , 4) + 30 3 (5 , 1) + 30 3 (4 , 4) + 

903(4, 1) + 3 0 3 ( 1 , 1) = (0 X 100) + (3 X 70) + 
(3 X 10) + (3 X 48) + (9 X 6) + (3 X 0) = 438 

The subgraph matrixes required for other TV' terms for 
the steroid are shown in Chart I. 

Chart I 

others 

e, e, e5 | e3 e4 e6 'e, 
e2 e3 e6 j <?, et e5 e, 
e% e, e7 ! e, e, e= e 

Triangles (/c,): c = 1 
2 

(V2 1 and W31)
 3 

U = 3) 
c = 1 

or 2 
3 

Squares (sc l): c = 1 I e, e3 ee e5 e2 

2 I e, C4 e- es e3 

1 ^2 e5 e6 

5 4 1 
4 4 1 
4 4 1 

4 4 1 1 
5 4 1 1 
5 4 1 1 

(.V31 and A''32) 
(s = 2) 

o r c = 1 I 5 4 1 1 4 
2 14 4 1 1 4 

Double-crossed squares (s'e(): none; hence (W33), = 0 

(,v21)5 = ! ^ ( / , , , ^ , y = 
Q5(5, 4, 1) + QB(4, 4, 1) + Q5(4, 4, 1) 

= Q4(S, 4) + 2<?4(4, 4) = 120 + 2(68) = 256 

References and Notes 

(1) Previous papers in the series: (a) J. B. Hendrickson, J. Am. Chem. Soc. 
93, 6847 (1971);-(b) Ibid., 93, 6854 (1971). 

(2) The first approaches to abstract discussion of synthesis were made by 
E. J. Corey, Pure Appl. Chem., 14, 19 (1967); Q. Rev., Chem. Soc, 25, 
455 (1971); E. J. Corey and W. T. Wipke, Science, 166, 178 (1969). 

(3) Indirect routes Include one or more skeletal cleavages and Include skel­
etal rearrangements as formal construction + cleavage. Such routes 
are Important to many actual successful syntheses, about 30% of the 
syntheses in a recent survey4 containing C-C cleavages, although rare­
ly more than one per synthesis. 

(4) Excellent summaries of syntheses may be found In N. Ayand, J. S. BIn-
dra, and S. Ranganathan, "Art In Organic Synthesis", Holden-Day, San 
Francisco, Calif., 1970. 

(5) To divide an acyclic molecule (of n carbons) in two requires only one cut 
at any of (n — 1) bonds, but a monocycle requires two cuts. A blcyclic 
molecule requires three cuts If the two resultant pieces are to be acy­
clic, and not any three will serve. 

(11) Any plane graph can be redrawn (as an Isomorphic graph) with any 
specified monocycle or face becoming the exterior face. The formal 
procedure Is to place the graph on a sphere with the specified face 
over the north pole, to stretch and spread the graph south over the 
sphere without allowing any line to cross the north pole, and then to 
project the graph onto a plane tangent to the south pole. Three isom-
orphs of one structure are Illustrated below; they are all equivalent rep­

resentations of the same molecular skeleton. Ten isomorphs of the ste­
roid skeleton are possible since the skeleton has ten rings, any of which 
can bound the exterior face. 

(12) The 18-methyl of the steroids, for example, can be drawn projecting 
Into the exterior face ((3oo = 1) into the faces of rings 3 or 4 (/333 or (344 
= li­

tis) Cro = 1 only if F Is fully connected; if it is not connected, then Cro = 0, 
and the largest monocycle is defined by the largest connected subgraph 
of r points In F (Cr = 1). F is not connected if the rings in the skeleton 
are not fused (I.e., no bonds in common), as in spiro compounds and 
separated rings like biphenyl. The fourth example in Figure 3 illustrates 
this. The complete face graph, F, however, is always connected. 

(14) The six four-point connected graphs are (ref 7, p 215): U; te\ IS; D; 
Q; B = A (latter two are designated as crossed squares). 

(15) The line graph L represents a reduction of F such that one point (Ij) in L 
corresponds to two adjacent points in F and a line (ijk) in L is thus three 
points In F. Therefore, counting the lines in L is equivalent to counting 
pairs of adjacent lines in F as in enumerating C3. The number of lines in 
L is / = 2/(2) and then C3 = / — 2A. This reduction procedure is analo­
gous to that used by D. Cartwright and T. C. Gleason, Psychometrika, 
31, 179(1966). 

(16) There is one exception to the enumeration formulas of Tables I and II. If 
a skeleton contains a completely surrounded ring (/30, = 0), the mono-
cycle described by fusing all the rings which surround the central ring is 
an annulus, not a ring, as may be seen in the first structure of ref 10, in 
which disconnecting bonds 17, 38, and 59 leave such an improper ring. 
Hence, In such cases, one must be subtracted from C1 if r rings sur­
round the central one. Hence for the tetracycle in ref 10, C3 = 3 rather 
than 4, and for cubane, C4 = 4 not 5. The second example of Figure 3 
also illustrates this reduction-of C3. 

(17) It would also be desirable to sort out synthons by size. This requires 
enumerating all the connected n-point subgraphs7,14 in the skeleton, 
and this In turn Is a very complex procedure owing to the number of 
forms such subgraphs can take, i.e., the number of possible structural 
isomers of Cn synthon skeletons. Thus there Is a problem of all parti­
tions of n0 atoms into k parts just to define the possible categories to 
enumerate. The problem is parallel to that described for partitioning the 
face graph Into categories In Table Il but much more complex for the 
larger n0-polnt graph of the full skeleton. 

(18) Such a prestruct is a "tree" In graph theory, i.e., a graph without cy­
cles. A graph with cycles contains a particular number of spanning 
trees linking all Its points; this set of spanning trees for the product skel­
eton would be Oi on the grid in Figure 5. 

(19) The grid considers only those skeletal atoms In a prestruct which ulti­
mately are incorporated into the final target so that the final target is 
necessarily T1, with only one component. Examination of syntheses In 
ref 3 shows that, in most instances, synthon skeletal atoms cleaved and 
lost are only C- units usually lost as CO2 or an equivalent. They are ig­
nored In this treatment. 

(20) F. Harary,7 private communication. 
(21) The procedure is of course amenable to simple Fortran programming, 

but this has not been done here. 
(22) Such determinants, cofactors of M, are all equal to each other. 
(23) As an extension, removal of any n linked atoms (rows and columns) 
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gives all the spanning trees incorporating those atoms with their original 
links intact. If two linked atoms are removed from M, one enumerates 
all acyclic precursors containing the bond which links them. The normal 
procedure for evaluating all | O-f removes any one atom, which is tanta­
mount to counting all acyclic precursors containing that one atom, i.e., 
all acyclic precursors. If all atoms are removed from matrix M, the eval­
uation Is taken as 1. 

(24) As noted in ref 19, cleavages which remove carbons not ultimately in­
corporated in the skeleton (usually as CO2) are not included In the grid; 
they may be regarded as functionalizlng (or defunctlonalizing) reactions. 
Thus the acceptable bonds indicated for cleavages in this discussion 
constitute a new ring, and their cleavage is a horizontal ring-opening line 
on the grid (Ar = — 1; Ak = O). 

(25) Nearly 30 of the 100 syntheses In ref 4 exhibit such indirect routes in 

An essential requirement for the development of system­
atic synthesis design must be a simple but rigorous numeri­
cal codification of the reactions used. Such a system must 
be free from prejudice about present capabilities or reaction 
yields. This paper develops such a system for construction 
reactions from the numerical characterization of structure 
previously presented.1 

That constructions are the central reactions of synthesis 
may be seen from consideration of the ideal synthesis. The 
ideal synthesis creates a complex skeleton from simpler 
starting materials2 and so must link several such synthon 
molecules via construction reactions. Ideally, the synthesis 
would start from available small molecules so functional-
ized as to allow constructions linking them together direct­
ly, in a sequence only of successive construction reactions 
involving no intermediary refunctionalizations, and leading 
directly to the structure of the target, not only its skeleton 
but also its correctly placed functionality. If available, such 
a synthesis would be the most economical, and it would con­
tain only construction reactions. The previous paper in this 
issue3 develops mathematically the enumeration of the pos­
sible modes of construction of target skeletons. Here the ac­
tual chemistry which can be used to effect these construc­
tions will be codified to define all possibilities in terms of 
their related substrate and product functionalities. Restric­
tive preconceptions about reaction mechanism are avoided 
in this development in favor of the more neutral and general 
conception of the net structural change occurring in any 
reaction. 

The net structural change at any single carbon site was 
previously characterized1 in terms of four kinds of attach­
ment to that carbon: H for hydrogen, R for <r bond to car­
bon, n for T bond to carbon, Z for any bond to heteroatom. 
In any reaction, the change from one attachment to another 
was characterized by two letters, the first showing the bond 
made, the second showing that broken. Thus, of the 16 pos­
sible reactions so characterized, the construction reactions 

which a skeletal bond, not in the product but useful at an early stage of 
the sequence, Is ultimately cleaved. As examples, in Corey's caryophyl-
lene (p 70), a large ring is formed by cleaving a more accessible bicy­
cle; In the Syntex cecropia horomone synthesis (p 79), two cleavages 
of a bicycle to an acyclic skeleton are used to create stereochemical 
control; In Johnson's progesterone (p 288), two ring sizes are changed 
at the same time by cleavage and recyclization (cf. Figure 6). 

(26) It would be misleading, for example, to consider the Barbier-Wieland 
degradation as an affixation of two six-carbon skeletal synthons fol­
lowed by cleavage of a 13-carbon unit. The present conception sees it 
as merely a functionalization of R-CH2COOR - • R-COOH in which the 
only skeletal carbons are R-C, i.e., those appearing in the final product. 

(27) The idea was proposed for picrotoxin b/osynthesis years ago by H. Con-
roy. 

are RH, RZ, and RII,4 with respect to either one of the two 
carbons forming the carbon-carbon a bond. 

A construction requires two partners, the linking carbon 
of each being characterized by RH, RZ, or RII, and these 
show oxidation state changes of Ax = +1, — 1, and 0, re­
spectively.1 The RII construction necessarily changes the 
character of a least one other carbon as well, the other car­
bon of the II bond undergoing addition, and the oxidation 
state changes of all must be added to find the net change 
(AJC) for RIl constructions. Thus the net change in RII con­
structions is always Ax = ±1. (For C=C -* R—C—C— 
Z, RII-ZII, Ax = +1 but, for C = C - C - Z — R—C— 
C=C, RIMIII-IIZ, Ax = -1) . The overall oxidation 
state change (the sum of both involved components) can be 
either oxidative or reductive, or isohypsic,1 with SAx = +2, 
—2, or 0, respectively. Oxidative and reductive couplings, 
however, are rarely useful in synthesis since they are only 
effective for creating symmetrical dimers in intermolecular 
reactions (although they can unite dissimilar functionalities 
in cyclizations). The present treatment largely focuses on 
isohypsic constructions of one oxidative and one reductive 
partner. Each partner in a construction will be categorized 
by reaction type as RH, RZ, or RII, depending on the 
change at the carbon forming the construction link. 

The numerical characterization1 concerns the numbers of 
each kind of attachment to a single carbon, as summarized 
in Figure 1. The skeletal value (a) shows the number of a 
bonds to other carbons, i.e., a = 0-4, and the functional 
value (J) shows the functionality level at that carbon site, / 
= 0-4. Since/ = II + Z, the sum of functional IT bonds to 
adjacent carbon and the number (Z) of heteroatom bonds, 
a distinction is made by placing one or two bars over an / 
value to denote the number (II) of ir bonds to adjacent car­
bon. Thus an enol ether carbon i s / = 2, the same functional 
level as the parent ketone (J = 2), and a chloroacetylene 
carbon i s / = 3, while a dichlorovinyl carbon i s / = 3, both 
at the functional level of carboxyl,/ = 3. 
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Abstract: A simple but rigorous system of codification for construction reactions is developed from structural fundamentals, 
free of mechanistic preconception. The system allows all constructions to be represented with a numerical representation of 
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